Package: SelectBoost 2.2.2
SelectBoost: A General Algorithm to Enhance the Performance of Variable Selection Methods in Correlated Datasets
An implementation of the selectboost algorithm (Bertrand et al. 2020, 'Bioinformatics', <doi:10.1093/bioinformatics/btaa855>), which is a general algorithm that improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. It can either produce a confidence index for variable selection or it can be used in an experimental design planning perspective.
Authors:
SelectBoost_2.2.2.tar.gz
SelectBoost_2.2.2.zip(r-4.5)SelectBoost_2.2.2.zip(r-4.4)SelectBoost_2.2.2.zip(r-4.3)
SelectBoost_2.2.2.tgz(r-4.4-any)SelectBoost_2.2.2.tgz(r-4.3-any)
SelectBoost_2.2.2.tar.gz(r-4.5-noble)SelectBoost_2.2.2.tar.gz(r-4.4-noble)
SelectBoost_2.2.2.tgz(r-4.4-emscripten)SelectBoost_2.2.2.tgz(r-4.3-emscripten)
SelectBoost.pdf |SelectBoost.html✨
SelectBoost/json (API)
NEWS
# Install 'SelectBoost' in R: |
install.packages('SelectBoost', repos = c('https://fbertran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/fbertran/selectboost/issues
- F_score_C - Simulations for reverse-engineering
- F_score_PB - Simulations for reverse-engineering
- F_score_PB_075_075 - Simulations for reverse-engineering
- F_score_PB_095_075 - Simulations for reverse-engineering
- F_score_PB_W - Simulations for reverse-engineering
- F_score_PL - Simulations for reverse-engineering
- F_score_PL2 - Simulations for reverse-engineering
- F_score_PL2_W - Simulations for reverse-engineering
- F_score_PL2_tW - Simulations for reverse-engineering
- F_score_PSel - Simulations for reverse-engineering
- F_score_PSel.5 - Simulations for reverse-engineering
- F_score_PSel.5.e2 - Simulations for reverse-engineering
- F_score_PSel.e2 - Simulations for reverse-engineering
- F_score_PSel_W - Simulations for reverse-engineering
- F_score_robust - Simulations for reverse-engineering
- M - Simulated Cascade network and inference
- Net - Simulated Cascade network and inference
- Net_inf_C - Simulated Cascade network and inference
- autoboost.res.x - Autoboost lasso diabetes first order.
- autoboost.res.x.adapt - Autoboost adaptative lasso diabetes first order.
- autoboost.res.x2 - Autoboost lasso diabetes second order.
- autoboost.res.x2.adapt - Autoboost adaptative lasso diabetes second order.
- fastboost.res.x - Fastboost lasso diabetes first order.
- fastboost.res.x.adapt - Fastboost adaptative lasso diabetes first order.
- fastboost.res.x2 - Fastboost lasso diabetes second order.
- fastboost.res.x2.adapt - Fastboost adaptative lasso diabetes second order.
- net_confidence - Confidence indices
- net_confidence_.5 - Confidence indices
- net_confidence_thr - Confidence indices
- nv_C - Simulations for reverse-engineering
- nv_PB - Simulations for reverse-engineering
- nv_PB_075_075 - Simulations for reverse-engineering
- nv_PB_095_075 - Simulations for reverse-engineering
- nv_PB_W - Simulations for reverse-engineering
- nv_PL - Simulations for reverse-engineering
- nv_PL2 - Simulations for reverse-engineering
- nv_PL2_W - Simulations for reverse-engineering
- nv_PL2_tW - Simulations for reverse-engineering
- nv_PSel - Simulations for reverse-engineering
- nv_PSel.5 - Simulations for reverse-engineering
- nv_PSel.5.e2 - Simulations for reverse-engineering
- nv_PSel.e2 - Simulations for reverse-engineering
- nv_PSel_W - Simulations for reverse-engineering
- nv_robust - Simulations for reverse-engineering
- predictive_positive_value_C - Simulations for reverse-engineering
- predictive_positive_value_PB - Simulations for reverse-engineering
- predictive_positive_value_PB_075_075 - Simulations for reverse-engineering
- predictive_positive_value_PB_095_075 - Simulations for reverse-engineering
- predictive_positive_value_PB_W - Simulations for reverse-engineering
- predictive_positive_value_PL - Simulations for reverse-engineering
- predictive_positive_value_PL2 - Simulations for reverse-engineering
- predictive_positive_value_PL2_W - Simulations for reverse-engineering
- predictive_positive_value_PL2_tW - Simulations for reverse-engineering
- predictive_positive_value_PSel - Simulations for reverse-engineering
- predictive_positive_value_PSel.5 - Simulations for reverse-engineering
- predictive_positive_value_PSel.5.e2 - Simulations for reverse-engineering
- predictive_positive_value_PSel.e2 - Simulations for reverse-engineering
- predictive_positive_value_PSel_W - Simulations for reverse-engineering
- predictive_positive_value_robust - Simulations for reverse-engineering
- sensitivity_C - Simulations for reverse-engineering
- sensitivity_PB - Simulations for reverse-engineering
- sensitivity_PB_075_075 - Simulations for reverse-engineering
- sensitivity_PB_095_075 - Simulations for reverse-engineering
- sensitivity_PB_W - Simulations for reverse-engineering
- sensitivity_PL - Simulations for reverse-engineering
- sensitivity_PL2 - Simulations for reverse-engineering
- sensitivity_PL2_W - Simulations for reverse-engineering
- sensitivity_PL2_tW - Simulations for reverse-engineering
- sensitivity_PSel - Simulations for reverse-engineering
- sensitivity_PSel.5 - Simulations for reverse-engineering
- sensitivity_PSel.5.e2 - Simulations for reverse-engineering
- sensitivity_PSel.e2 - Simulations for reverse-engineering
- sensitivity_PSel_W - Simulations for reverse-engineering
- sensitivity_robust - Simulations for reverse-engineering
- test.seq_C - Simulations for reverse-engineering
- test.seq_PB - Simulations for reverse-engineering
- test.seq_PB_075_075 - Simulations for reverse-engineering
- test.seq_PB_095_075 - Simulations for reverse-engineering
- test.seq_PB_W - Simulations for reverse-engineering
- test.seq_PL - Simulations for reverse-engineering
- test.seq_PL2 - Simulations for reverse-engineering
- test.seq_PL2_W - Simulations for reverse-engineering
- test.seq_PL2_tW - Simulations for reverse-engineering
- test.seq_PSel - Simulations for reverse-engineering
- test.seq_PSel.5 - Simulations for reverse-engineering
- test.seq_PSel.5.e2 - Simulations for reverse-engineering
- test.seq_PSel.e2 - Simulations for reverse-engineering
- test.seq_PSel_W - Simulations for reverse-engineering
- test.seq_robust - Simulations for reverse-engineering
confidencecorrelationcorrelation-structuremodellingprecisionrecallselection-algorithm
Last updated 2 years agofrom:5610332658. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | OK | Oct 29 2024 |
R-4.5-linux | OK | Oct 29 2024 |
R-4.4-win | OK | Oct 29 2024 |
R-4.4-mac | OK | Oct 29 2024 |
R-4.3-win | OK | Oct 29 2024 |
R-4.3-mac | OK | Oct 29 2024 |
Exports:AICc_glmnetBalasso_enet_msgps_allalasso_msgps_allauto.analyzeautoboostBIC_glmnetBboost.adjustboost.applyboost.compcorrsboost.correlation_signboost.findgroupsboost.normalizeboost.randomboost.selectboost.Xpasscompsimenet_msgps_allenetf_msgps_AICcenetf_msgps_BICenetf_msgps_Cpenetf_msgps_GCVfastboostforce.non.incgroup_func_1group_func_2lasso_cascadelasso_cv_glmnet_1selasso_cv_glmnet_1se_weightedlasso_cv_glmnet_all_5flasso_cv_glmnet_bin_1selasso_cv_glmnet_bin_alllasso_cv_glmnet_bin_minlasso_cv_glmnet_minlasso_cv_glmnet_min_weightedlasso_cv_lars_1selasso_cv_lars_minlasso_glmnet_bin_AICclasso_glmnet_bin_alllasso_glmnet_bin_BIClasso_msgps_AICclasso_msgps_alllasso_msgps_BIClasso_msgps_Cplasso_msgps_GCVplotrerrridge_logisticselectboostsgpls_spls_allsimulation_corsimulation_DATAsimulation_Xspls_spls_allsplsda_spls_alltrajC0varbvs_binomial_allvarbvs_linear_all
Dependencies:abindanimationCascadecliclustercodetoolscpp11curldeldirforeachglmnetglueigraphinterpiteratorsjpeglarslatticelatticeExtralifecyclelimmamagicmagickmagrittrMASSMatrixmsgpsnnetnnlsnor1mixpkgconfigplspngRColorBrewerRcppRcppArmadilloRcppEigenRcppGSLRcppParallelRcppZigguratRfastrlangshapesplsstatmodsurvivaltnetvarbvsvctrsVGAM
Benchmarking the SelectBoost Package for Network Reverse Engineering
Rendered frombenchmarking-selectboost-networks.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2022-11-29
Started: 2019-05-02
Simulation Tools Provided With the Selectboost Package
Rendered fromsim-with-sb.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2022-11-29
Started: 2019-05-02
Towards Confidence Estimates in Cascade Networks using the SelectBoost Package
Rendered fromconfidence-indices-Cascade-networks.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2022-11-29
Started: 2019-05-02
Readme and manuals
Help Manual
Help page | Topics |
---|---|
AICc and BIC for glmnet logistic models | AICc_BIC_glmnetB AICc_glmnetB BIC_glmnetB rerr ridge_logistic |
Find limits for selectboost analysis | auto.analyze auto.analyze.selectboost |
Autoboost | autoboost |
Autoboost lasso diabetes first order. | autoboost.res.x |
Autoboost adaptative lasso diabetes first order. | autoboost.res.x.adapt |
Autoboost lasso diabetes second order. | autoboost.res.x2 |
Autoboost adaptative lasso diabetes second order. | autoboost.res.x2.adapt |
Boost step by step functions | boost boost.adjust boost.apply boost.compcorrs boost.correlation_sign boost.findgroups boost.normalize boost.random boost.select boost.Xpass |
Confidence indices | Cascade_confidence net_confidence net_confidence_.5 net_confidence_thr |
Simulated Cascade network and inference | Cascade_example M Net Net_inf_C |
Fastboost | fastboost |
Fastboost lasso diabetes first order. | fastboost.res.x |
Fastboost adaptative lasso diabetes first order. | fastboost.res.x.adapt |
Fastboost lasso diabetes second order. | fastboost.res.x2 |
Fastboost adaptative lasso diabetes second order. | fastboost.res.x2.adapt |
Non increasing post processinng step for selectboost analysis | force.non.inc |
Generate groups by thresholding. | group_func_1 |
Generate groups using community analysis. | group_func_2 |
Miscellaneous plot functions | miscplot plot.matrix |
Network confidence class. | network.confidence-class |
plot_Selectboost_cascade | plot,network.confidence,ANY-method plot,network.confidence,network.confidence-method plot_selectboost_cascade |
Plot selectboost object | plot.selectboost |
Plot a summary of selectboost results | plot.summary.selectboost |
Simulations for reverse-engineering | F_score_C F_score_PB F_score_PB_075_075 F_score_PB_095_075 F_score_PB_W F_score_PL F_score_PL2 F_score_PL2_tW F_score_PL2_W F_score_PSel F_score_PSel.5 F_score_PSel.5.e2 F_score_PSel.e2 F_score_PSel_W F_score_robust nv_C nv_PB nv_PB_075_075 nv_PB_095_075 nv_PB_W nv_PL nv_PL2 nv_PL2_tW nv_PL2_W nv_PSel nv_PSel.5 nv_PSel.5.e2 nv_PSel.e2 nv_PSel_W nv_robust predictive_positive_value_C predictive_positive_value_PB predictive_positive_value_PB_075_075 predictive_positive_value_PB_095_075 predictive_positive_value_PB_W predictive_positive_value_PL predictive_positive_value_PL2 predictive_positive_value_PL2_tW predictive_positive_value_PL2_W predictive_positive_value_PSel predictive_positive_value_PSel.5 predictive_positive_value_PSel.5.e2 predictive_positive_value_PSel.e2 predictive_positive_value_PSel_W predictive_positive_value_robust results_simuls_reverse_engineering_v3 sensitivity_C sensitivity_PB sensitivity_PB_075_075 sensitivity_PB_095_075 sensitivity_PB_W sensitivity_PL sensitivity_PL2 sensitivity_PL2_tW sensitivity_PL2_W sensitivity_PSel sensitivity_PSel.5 sensitivity_PSel.5.e2 sensitivity_PSel.e2 sensitivity_PSel_W sensitivity_robust test.seq_C test.seq_PB test.seq_PB_075_075 test.seq_PB_095_075 test.seq_PB_W test.seq_PL test.seq_PL2 test.seq_PL2_tW test.seq_PL2_W test.seq_PSel test.seq_PSel.5 test.seq_PSel.5.e2 test.seq_PSel.e2 test.seq_PSel_W test.seq_robust |
SelectBoost | SelectBoost |
Selectboost_cascade | selectboost selectboost,micro_array,micro_array-method selectboost,micro_array-method selectboost_cascade |
Miscellaneous simulation functions | compsim compsim.simuls simulation simulation_cor simulation_DATA simulation_X |
Summarize a selectboost analysis | summary.selectboost |
Plot trajectories | trajC0 trajC0.selectboost |
Variable selection functions | enetf_msgps_AICc enetf_msgps_BIC enetf_msgps_Cp enetf_msgps_GCV lasso_cascade lasso_cv_glmnet_1se lasso_cv_glmnet_1se_weighted lasso_cv_glmnet_bin_1se lasso_cv_glmnet_bin_min lasso_cv_glmnet_min lasso_cv_glmnet_min_weighted lasso_cv_lars_1se lasso_cv_lars_min lasso_glmnet_bin_AICc lasso_glmnet_bin_BIC lasso_msgps_AICc lasso_msgps_BIC lasso_msgps_Cp lasso_msgps_GCV var_select |
Variable selection functions (all) | alasso_enet_msgps_all alasso_msgps_all enet_msgps_all lasso_cv_glmnet_all_5f lasso_cv_glmnet_bin_all lasso_glmnet_bin_all lasso_msgps_all sgpls_spls_all splsda_spls_all spls_spls_all varbvs_binomial_all varbvs_linear_all var_select_all |