Package: peperr 1.4

peperr: Parallelised Estimation of Prediction Error

Designed for prediction error estimation through resampling techniques, possibly accelerated by parallel execution on a compute cluster. Newly developed model fitting routines can be easily incorporated. Methods used in the package are detailed in Porzelius Ch., Binder H. and Schumacher M. (2009) <doi:10.1093/bioinformatics/btp062> and were used, for instance, in Porzelius Ch., Schumacher M.and Binder H. (2011) <doi:10.1007/s00180-011-0236-6>.

Authors:Christine Porzelius, Harald Binder

peperr_1.4.tar.gz
peperr_1.4.zip(r-4.5)peperr_1.4.zip(r-4.4)peperr_1.4.zip(r-4.3)
peperr_1.4.tgz(r-4.4-x86_64)peperr_1.4.tgz(r-4.4-arm64)peperr_1.4.tgz(r-4.3-x86_64)peperr_1.4.tgz(r-4.3-arm64)
peperr_1.4.tar.gz(r-4.5-noble)peperr_1.4.tar.gz(r-4.4-noble)
peperr_1.4.tgz(r-4.4-emscripten)peperr_1.4.tgz(r-4.3-emscripten)
peperr.pdf |peperr.html
peperr/json (API)
NEWS

# Install 'peperr' in R:
install.packages('peperr', repos = c('https://fbertran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/fbertran/peperr/issues

On CRAN:

4.38 score 2 stars 1 packages 20 scripts 423 downloads 4 mentions 16 exports 5 dependencies

Last updated 3 years agofrom:5fb6f611a3. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64OKNov 06 2024
R-4.5-linux-x86_64OKNov 06 2024
R-4.4-win-x86_64OKNov 06 2024
R-4.4-mac-x86_64OKNov 06 2024
R-4.4-mac-aarch64OKNov 06 2024
R-4.3-win-x86_64OKNov 06 2024
R-4.3-mac-x86_64OKNov 06 2024
R-4.3-mac-aarch64OKNov 06 2024

Exports:aggregation.brieraggregation.misclassaggregation.pmpeccomplexity.LASSOextract.funfit.coxphfit.LASSOipecpeperrperrPLLpmpecpredictProbpredictProb.coxphpredictProb.survfitresample.indices

Dependencies:latticeMatrixsnowsnowfallsurvival