Package: plsRglm 1.5.1
plsRglm: Partial Least Squares Regression for Generalized Linear Models
Provides (weighted) Partial least squares Regression for generalized linear models and repeated k-fold cross-validation of such models using various criteria <arxiv:1810.01005>. It allows for missing data in the explanatory variables. Bootstrap confidence intervals constructions are also available.
Authors:
plsRglm_1.5.1.tar.gz
plsRglm_1.5.1.zip(r-4.5)plsRglm_1.5.1.zip(r-4.4)plsRglm_1.5.1.zip(r-4.3)
plsRglm_1.5.1.tgz(r-4.4-any)plsRglm_1.5.1.tgz(r-4.3-any)
plsRglm_1.5.1.tar.gz(r-4.5-noble)plsRglm_1.5.1.tar.gz(r-4.4-noble)
plsRglm_1.5.1.tgz(r-4.4-emscripten)plsRglm_1.5.1.tgz(r-4.3-emscripten)
plsRglm.pdf |plsRglm.html✨
plsRglm/json (API)
NEWS
# Install 'plsRglm' in R: |
install.packages('plsRglm', repos = c('https://fbertran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/fbertran/plsrglm/issues
- CorMat - Correlation matrix for simulating plsR datasets
- Cornell - Cornell dataset
- XbordeauxNA - Incomplete dataset for the quality of wine dataset
- XpineNAX21 - Incomplete dataset from the pine caterpillars example
- aze - Microsatellites Dataset
- aze_compl - As aze without missing values
- bordeaux - Quality of wine dataset
- bordeauxNA - Quality of wine dataset
- fowlkes - Fowlkes dataset
- pine - Pine dataset
- pineNAX21 - Incomplete dataset from the pine caterpillars example
- pine_full - Complete Pine dataset
- pine_sup - Complete Pine dataset
Last updated 2 years agofrom:058296cd0c. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 03 2024 |
R-4.5-win | NOTE | Nov 03 2024 |
R-4.5-linux | NOTE | Nov 03 2024 |
R-4.4-win | OK | Nov 03 2024 |
R-4.4-mac | OK | Nov 03 2024 |
R-4.3-win | OK | Nov 03 2024 |
R-4.3-mac | OK | Nov 03 2024 |
Exports:aic.dofAICplsbic.dofbootplsbootplsglmboxplots.bootplscoef.plsRglmmodelcoef.plsRmodelcoefs.plsRcoefs.plsR.rawcoefs.plsRglmcoefs.plsRglm.rawcoefs.plsRglmnpcoefs.plsRnpconfints.bootplscv.plsRcv.plsRglmcv.plsRglmmodel.defaultcv.plsRglmmodel.formulacv.plsRmodel.defaultcv.plsRmodel.formulacvtablecvtable.plsRcvtable.plsRglmdichogmdl.dofinfcrit.dofkfolds2Chisqkfolds2Chisqindkfolds2coeffkfolds2CVinfos_glmkfolds2CVinfos_lmkfolds2Mclassedkfolds2Mclassedindkfolds2Presskfolds2Pressindloglikplspermcoefs.plsRpermcoefs.plsR.rawpermcoefs.plsRglmpermcoefs.plsRglm.rawpermcoefs.plsRglmnppermcoefs.plsRnpplot.table.summary.cv.plsRglmmodelplot.table.summary.cv.plsRmodelplots.confints.bootplsPLS_glmPLS_glm_formulaPLS_glm_kfoldcvPLS_glm_kfoldcv_formulaPLS_glm_wvcPLS_lmPLS_lm_formulaPLS_lm_kfoldcvPLS_lm_kfoldcv_formulaPLS_lm_wvcplsRplsR.dofplsRglmplsRglmmodel.defaultplsRglmmodel.formulaplsRmodel.defaultplsRmodel.formulapredict.plsRglmmodelpredict.plsRmodelprint.cv.plsRglmmodelprint.cv.plsRmodelprint.plsRglmmodelprint.plsRmodelprint.summary.plsRglmmodelprint.summary.plsRmodelsignpredsimul_data_completesimul_data_UniYXsimul_data_UniYX_binomsimul_data_YXsummary.cv.plsRglmmodelsummary.cv.plsRmodelsummary.plsRglmmodelsummary.plsRmodeltilt.bootplstilt.bootplsglm
Dependencies:abindbackportsbipartitebootbroomcarcarDatacliclustercodacolorspacecowplotcpp11DerivdoBydotCall64dplyrfansifarverfieldsFormulagenericsggplot2gluegtableigraphisobandlabelinglatticelifecyclelme4magrittrmapsMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellmvtnormnetworknlmenloptrnnetnumDerivpbkrtestpermutepillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangscalessnaspamSparseMstatnet.commonstringistringrsurvivaltibbletidyrtidyselectutf8vctrsveganviridisLitewithr