Package: plsdof 0.3-2

plsdof: Degrees of Freedom and Statistical Inference for Partial Least Squares Regression

The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression. Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on cross-validation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures (Kramer and Sugiyama 2012 <doi:10.1198/jasa.2011.tm10107>). Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.

Authors:Nicole Kraemer, Mikio L. Braun

plsdof_0.3-2.tar.gz
plsdof_0.3-2.zip(r-4.5)plsdof_0.3-2.zip(r-4.4)plsdof_0.3-2.zip(r-4.3)
plsdof_0.3-2.tgz(r-4.4-any)plsdof_0.3-2.tgz(r-4.3-any)
plsdof_0.3-2.tar.gz(r-4.5-noble)plsdof_0.3-2.tar.gz(r-4.4-noble)
plsdof_0.3-2.tgz(r-4.4-emscripten)plsdof_0.3-2.tgz(r-4.3-emscripten)
plsdof.pdf |plsdof.html
plsdof/json (API)
NEWS

# Install 'plsdof' in R:
install.packages('plsdof', repos = c('https://fbertran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/fbertran/plsdof/issues

Pkgdown site:https://fbertran.github.io

On CRAN:

3.65 score 3 stars 30 scripts 413 downloads 21 exports 1 dependencies

Last updated 2 years agofrom:c46661633e. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 17 2025
R-4.5-winOKJan 17 2025
R-4.5-linuxOKJan 17 2025
R-4.4-winOKJan 17 2025
R-4.4-macOKJan 17 2025
R-4.3-winOKJan 17 2025
R-4.3-macOKJan 17 2025

Exports:benchmark.plsbenchmark.regressioncompute.lower.bounddAdnormalizedvvtzfirst.local.minimuminformation.criteriakernel.pls.fitkrylovlinear.pls.fitnormalizepcrpcr.cvpls.cvpls.dofpls.icpls.modelridge.cvtrvvtz

Dependencies:MASS