Package: plsdof 0.3-2

plsdof: Degrees of Freedom and Statistical Inference for Partial Least Squares Regression

The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression. Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on cross-validation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures (Kramer and Sugiyama 2012 <doi:10.1198/jasa.2011.tm10107>). Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.

Authors:Nicole Kraemer, Mikio L. Braun

plsdof_0.3-2.tar.gz
plsdof_0.3-2.zip(r-4.5)plsdof_0.3-2.zip(r-4.4)plsdof_0.3-2.zip(r-4.3)
plsdof_0.3-2.tgz(r-4.4-any)plsdof_0.3-2.tgz(r-4.3-any)
plsdof_0.3-2.tar.gz(r-4.5-noble)plsdof_0.3-2.tar.gz(r-4.4-noble)
plsdof_0.3-2.tgz(r-4.4-emscripten)plsdof_0.3-2.tgz(r-4.3-emscripten)
plsdof.pdf |plsdof.html
plsdof/json (API)
NEWS

# Install 'plsdof' in R:
install.packages('plsdof', repos = c('https://fbertran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/fbertran/plsdof/issues

On CRAN:

3.67 score 3 stars 31 scripts 422 downloads 21 exports 1 dependencies

Last updated 2 years agofrom:c46661633e. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-winOKNov 18 2024
R-4.5-linuxOKNov 18 2024
R-4.4-winOKNov 18 2024
R-4.4-macOKNov 18 2024
R-4.3-winOKNov 18 2024
R-4.3-macOKNov 18 2024

Exports:benchmark.plsbenchmark.regressioncompute.lower.bounddAdnormalizedvvtzfirst.local.minimuminformation.criteriakernel.pls.fitkrylovlinear.pls.fitnormalizepcrpcr.cvpls.cvpls.dofpls.icpls.modelridge.cvtrvvtz

Dependencies:MASS